

PROGRAM EXECUTIVE OFFICE FOR SIMULATION, TRAINING & INSTRUMENTATION

High Performance Computing for Interactive Training Simulation

ROGER SMITH Chief Technology Officer US Army PEO STRI

Approved for Public Release. Security and OPSEC Review Completed: No Issues. PEO-STRI Engineering Town Hall 15 October 2008, Orlando, FL

High Performance Computer

> HPC = Supercomputer

A computer which, among existing general-purpose computers at any given time, is <u>superlative</u>, often in several senses: highest computation rate, largest memory, or highest cost. Predominantly, the term refers to the fastest "number crunchers," that is, machines designed to perform numerical calculations at the highest speed that the latest electronic device technology and the state of the art of computer architecture allow.

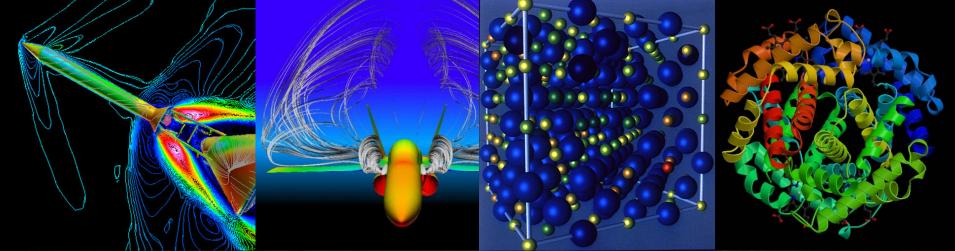
- Processors: Teraflops (10¹²)
- Storage: Terabytes
- Network: Gigabits/sec (10⁹)

	Single	Double	Quad
1X	2 Gbit/s	4 Gbit/s	8 Gbit/s
4 X	8 Gbit/s	16 Gbit/s	32 Gbit/s
12X	24 Gbit/s	48 Gbit/s	96 Gbit/s

Top 10 Super Computers

Rank	Rmax Rpeak (Tflops)	Name	Computer Processor cores	Maker	Site Country, Year
1	1026 1375.8	Roadrunner	IBM BladeCenter QS22/LS21 122400 (Cell/Opteron)	IBM	Los Alamos National Laboratory IIII United States, 2008
2	478.2 596.4	Blue Gene/L	eServer Blue Gene Solution 212992 (Power)	IBM	Lawrence Livermore National Laboratory United States, 2004
3	450.3 557.1	Intrepid[1] 🗗	Blue Gene/P Solution 163840 (Power)	IBM	Argonne National Laboratory IIII United States, 2008
4	326 503.8	Ranger	Sun Constellation System 62976 (Opteron), Infiniband	Sun	Texas Advanced Computing Center United States, 2008
5	205 260.2	Jaguar	Cray XT4 30976 (Opteron)	Cray	Oak Ridge National Laboratory IIII United States, 2008
6	167.3 222.8	JUGENE	Blue Gene/P Solution 65536 (Power)	IBM	Jülich Research Centre Germany, 2007
7	126.9 172.0	Encanto	SGI Altix ICE 8200 14336 (Xeon), InfiniBand	SGI	New Mexico Computing Applications Center IIII United States, 2007
8	117.9 170.9	EKA	Cluster Platform 3000 14240 (Xeon), InfiniBand	HP	Computational Research Laboratories
9	112.5 139.3		Blue Gene/P Solution 40960 (Power)	IBM	IDRIS France, 2008
10	106.1 122.9		SGI Altix ICE 8200EX 10240 (Xeon), InfiniBand	SGI	Total France, 2008

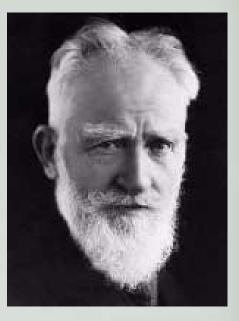
HPC Applications



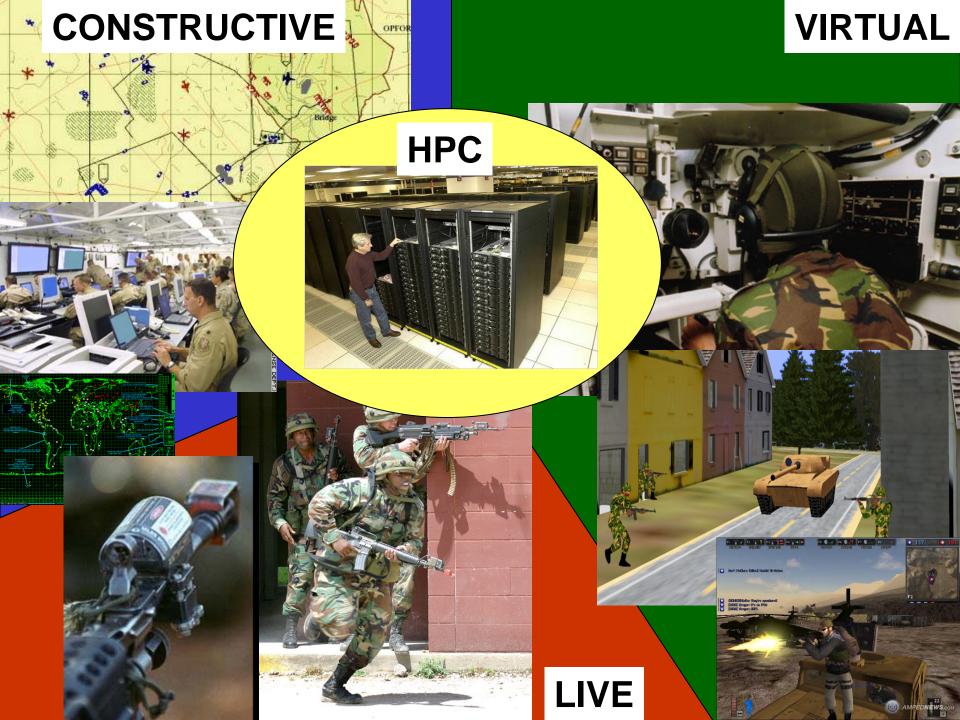
Typical Batch Jobs

- Computational Fluid Dynamics
- Computational Chemistry
- Protein Folding
- Cryptanalysis

Interactive Simulation


- > Urban Challenge 2004
- Joint SAF (Clutter Sim)
- Tony Cerri, Jim Blank, & Andy Ceranowitz, J9
- Bob Lucas & Dan Davis, USC ISI

Vision for Orlando Simulation Industry


- "The reasonable man adapts himself to the world; the unreasonable one persists in trying to adapt the world to himself. Therefore all progress depends on the unreasonable man."
 - Man and Superman, 1903, George Bernard Shaw
- > Thank You to Some Unreasonable People:
 - HON Tom Feeney, US House of Representatives
 - Jim Blake & Mike Macedonia, PEO-STRI
 - Randy Shumaker & Brian Goldiez, UCF IST
 - Dave Pratt, SAIC
 - COL Ken Wheeler, PM CONSIM
 - LTC Ray Compton & Troy Dere, RDECOM STTC
 - Cray Henry & Andy Mark, HPCMO
 - Mark Fry, IBM & Russ Patten, Mainline Info Sys
 - Dennis Liebold, SGI

Objectives

- Leverage the power of HPC as the server farm for interactive simulation for training
 - ✤ OneSAF
 - ✤ WARSIM
 - Multiplayer Game Server Farm
- Multiple simultaneous exercises supported from a single simulation center
- Physics-based object, weather, and terrain modeling (put the "reality" in virtual reality)
- Tighter network connections between applications to eliminate lag
- Cloud Computing service migration

Simulation in the 21st Century

Sim Center	Delivery	Customer
HPC,	Customer- centric,	Game Tech,
Lights-out		IT Desktop
Centers,	Dot-Mil	Access,
	network,	
Distributed		C4I Network
Operators	QoS	
	Contracts	

HALLE at CERDEC & PEO-C3T *CERDEC

- Access to CERDEC Labs, PEO C3T, PEO IEW&S, CECOM, and FCS (BCT) NSI labs
- Leverages the Center for LVC M&S and High Performance Computing Enclaves
- Conduit for Distributed Network Connectivity
- Supports In-Theater Network Data Collection and Reduction

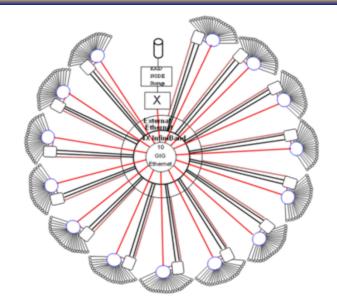
- Fully Instrumented ranges
 - Experiment command and control
- Commercially restricted airspace unrestricted to support UAS and Air operations up 8000 ft
- · Full spectrum of terrain
- Designated Army experimental station listed in NTIA Manual of Regulations and Procedures for Federal Radio Frequency Management

US Army Space and Missile Defense Command/ US Army Forces Strategic Command UNCLASSIFIED

SMDC's SGI Altix 3700

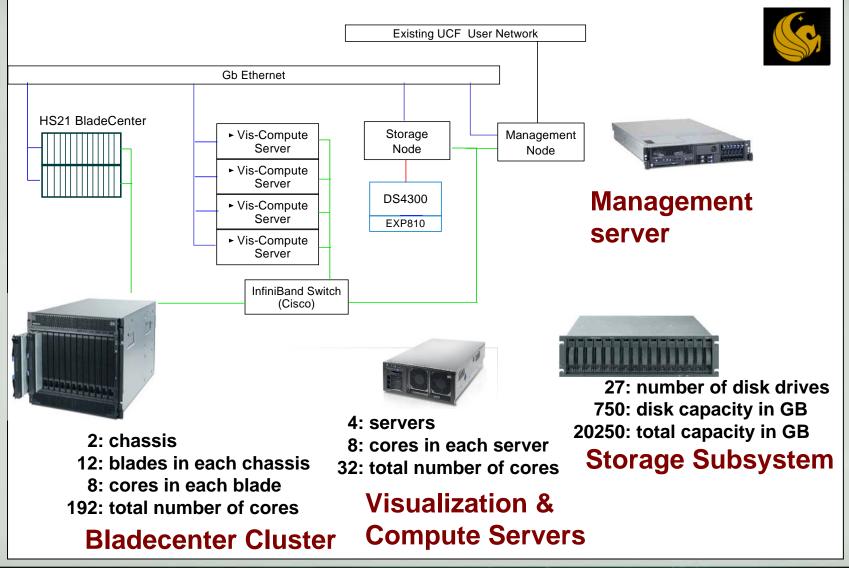
Scalable Single Image / Global Memory Architecture

- ▶128 1.6 GHz Processors
 - ♦6.4 GFLOP Intel Itanium2 CPUs,
 - 820 GFLOP system peak
- ≻128 GByte Memory
- ≻SuSE Linux
- ≻5 TByte FiberChannel/SATA Disk
- ➢Gigabit Ethernet network
- HPC Load Sharing Facility (LSF) batch queuing system
- Fortran 90, Fortran 77, C, and C++
- MIPS Pro Auto Parallelization Option
- ➢ProDev Workshop


"Secure the High Ground"

AFRL's PS3 Cell Cluster

Received warmen


- The Cell Cluster has a peak performance of 51.5 Teraflops from 336 PS3s and additional 1.4 TF from the headnodes on its 14 subclusters.
- Cost: \$361K (\$257K from HPCMP)
 PS3s 37% of cost
- Price Performance: 147 TFLOPS/\$M
- The 24 PS3s in aggregate contain 6
 GB of memory and 960 GB of disk. The dual quad-core Xeon headnodes have 32 GB of DRAM and 4 TB of disk.

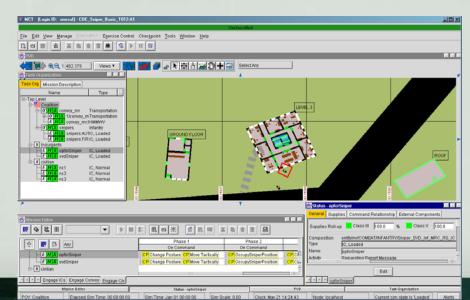
Team Orlando HPC "Stokes"

IBM HS21 Bladecenter Cluster

	Installed in Each Blade	
Intel Xeon Processor	2 quad-core E5450 (Harpertown) 8 cores @ 3.0 GHz	
L2 Cache	2 X 2 X 6144 KiB	
Memory	8 GB, 667 MHz, DDR2	
Front Side Bus	1333 MT/s	
internal disk	73 GB, 10K RPM SAS	
Power	80 W	
Ethernet	1 Gb Ethernet	
InfiniBand	Single-port 4X DDR IB PCI-E HCA (Cisco)	
Linux OS	Red Hat V5	
Compilers	GCC Intel Fortran V10.1 Intel C++ V10.1 PGI V7	

Orlando HPC: 24 Blades, 192 cores

Predecessor Experiments


- > WARSIM Port
 - ✤ HPCMO, SAIC
- Physics-based Environment for Urban Operations using OneSAF
 - ✤ HPCMO, STRI, SAIC
- Millennium Challenge Exercise Clutter using JointSAF
 JFCOM, Maui SCC, Alion
- > PEO-C3T C4ISR On-the-Move (OTM) program includes OneSAF
 - ✤ CERDEC, HPTi, SAIC, HPCMO

OneSAF Porting

- > HPCMO Funded
- Team Orlando Coordination STRI, STTC, HPCMO, SAIC, UCF IST
- Porting OneSAF to UCF Stokes HPC

IBM x-series machine running Red Hat Enterprise

OneSAF HPC Research Problems

- Porting
 - Host OneSAF Sim Core and MCT on HPC
- Computational Distribution
 - Efficiency of thread distribution in HPC environment
 - Function of JVM, Node/Process/Core availability
- MCT Interface
 - Internal to HPC with VNC video exported
 - External with efficient network comms
- Light Interface
 - Operate via light GUI interface outside of HPC (e.g. Browser interface)
- Infiniband Network
 - Multiple instances using Infiniband vs. Ethernet to communicate

MITRE IRAD FY09

- Ernie Page, Emmet Beeker
- Extend CombatCloud to use other HPC assets
 - ✤ UCF Stokes and CERDEC Halle
- > Wrap OneSAF as cloud application
 - Identify relevant OneSAF components (core simulation, scenario generation tool(s), after-action review tool(s), etc.), their ancillary support utilities, and other software elements, and identify preferred approach for wrapping as Condor/Stork jobs.
- Support mobility of OneSAF elements in the cloud
 - Define and implement load balancing strategies.
- Evaluate the performance of cloud-based OneSAF
 - Define performance metrics (with focus on scalability, throughput, reliability, ease of use/access). Conduct experiments.

WARSIM Potential

- > Dr. Blake is interested in tackling a challenging problem
- Start with WARSIM, move to JLCCTC
- > Beyond multiple core workstations

Team Orlando Efforts

- PEO-STRI, STTC, UCF IST, Industry
- \$1M & \$2.4M Congressional Money
- \$100K HPCMO
- > \$60K JTIEC
- Supercomputing 2007 & 2008 Conference Panel
- TechNet 2009 Tutorial

Conclusion

- Reduce operational costs for hardware, shipping, set-up time, travel, staffing
- Increase soldier/unit access to training systems
- Increase exercise reliability and availability
- Increase model fidelity
- Increase model synchronization