
Game Programming Gems 4

1

10 Fingers of Death: Algorithms for Combat Killing
Roger Smith and Don Stoner – Titan Corporation

Good shooting games need good killing algorithms. This gem provides a series of combat
algorithms that can be used to improve the realism of combat decisions and do so with
faster algorithms. Most of the algorithms discussed here were developed for the United
States military and have been validated for use in one or more real combat simulations.

First-person shooter killing algorithms are fine, but some situations can be handled more
accurately and efficiently by including geometry, statistics, probability, and aggregation.
Massively Multi-player and Real-time Strategy games particularly include a lot of action
that does not have to be modeled with individual line-of-sight (LOS) and targeting for a
headshot. These and other games can also benefit from the inclusion of multiple kill types
that are based on real live-fire experiments. First-person shooters may equip AI’s with
some of these algorithms while leaving the more detailed LOS algorithms for the avatar
controlled by the human player.

Hitting a Ribbon

The first finger of death presents a simple method for determining whether a shooter will
hit a ribbon target like a road, river, long convoy of vehicles, or a serpentine creature
(Figure 1). If the target is so long that it is impossible to overshoot or undershoot its
length, the probability of hitting the target is dependent only upon the width of the target
and the standard deviation of the shot pattern of the weapon. This simple algorithm is
also a good way to introduce the logic and mathematics behind several of the attrition
algorithms that follow [Parry95]. Deviations in the impact point of the munitions being
fired are due to factors such as the quality of the weapon, steadiness and skill of the
human operator, variations in the construction of the projectile, and wind conditions.

σ x
W

W
σ x

Figure 1. Probability of Hitting a Ribbon Target

Game Programming Gems 4

2

Equation

The equation for calculating the probability of hit (Ph) for a ribbon target is:

xh WP πσ22=

where,
W is the width of the target, and
σx is the standard deviation of the bullet dispersion in the x dimension.
This assumes that the pattern is normally distributed with the same standard
deviation in both the x and y dimensions.

[Note: The code for all of these algorithms can be found on the CD-ROM.]

Hitting the Bullseye

The second finger of death describes the math and probability of hitting a round target.
Like the previous algorithm, this one is based on the fact that all shooters, human and
machine alike, have built-in variation in every shot fired.

The algorithm is driven by two very simple variables – the radius of the target and the
standard deviation of the rounds. This deviation is based on a normal distribution in
which the mean value is zero because the shooter is aimed directly at the center of the
target [Parry95]. The algorithm determines whether each shot will hit the target, but does
not calculate the actual impact point of the round. This simplification eliminates
calculations that would have to be done to distribute the round normally in both the x and
y dimension.

σx r

Figure 2. Probability of Hitting the Bullseye

Equation

The equation for calculating the probability of hit (Ph) for a round target is:
()22 21 xr

h eP σ−−=

Game Programming Gems 4

3

where,
r is the radius of the target, and
σx is the standard deviation of the bullet dispersion in the x dimension.

Hitting a Rectangle

Most targets are not shaped like bullseyes, so we need a more flexible algorithm to shoot
rectangular targets like the torso of a human or a vehicle. This algorithm includes
measures for the length and width of a rectangular target [Parry95].

σx
L

Wσy

Figure 3. Probability of Hitting a Rectangle

Equation

The equation for calculating the probability of hit (Ph) for a rectangular target is:

()

()22

22

2

2

1

1

*

y

x

W

L

h

eB

eA

BAP

πσ

πσ

−

−

−=

−=

=

where,
L is the length of the target in the x dimension,
W is the width of the target in the y dimension,
σx is the standard deviation of the bullet dispersion in the x dimension, and
σy is the standard deviation of the bullet dispersion in the y dimension.

Weapons often have different standard deviations in the x and y dimensions. For
example, when a football quarterback throws a pass, the variation from the aim point
along the axis of flight is usually greater than the variation left or right of the aim point.
The same is true for missiles being fired at a combat vehicle or rocks being thrown at a
dinosaur.

Shotgunning a Small Target

Game Programming Gems 4

4

Some weapons unleash a barrage of rockets, bomblets, or explosive munitions all at once
in an attempt to totally overwhelm the target and blow it to smithereens. When this
happens, there are much faster ways of determining the killing effect of the entire barrage
than calculating the impact points and lethality of each rocket individually and then
accumulating them.

This algorithm calculates the probability that one of the munitions’ lethal areas will
overlap with the point target. The size of the target is not considered in these calculations
because it is assumed that the lethal blast area can encompass an entire target [Parry95].

T

Shooter

n Simultaneous
Rounds

a

σx

Figure 4. Probability of Killing a Target with a Simultaneous Barrage of Munitions

Equation

()221 xna
k eP πσ−−=

where,
n is the number of rounds in the barrage,
a is the lethal area of a single round against this target, and
σx is the standard deviation of the bullet dispersion in the x dimension.

Death by Walking Artillery

Artillery and catapult rounds are often adjusted by a spotting team that radios corrections
back to the firing battery and allows them to place the next round closer to the target.
When this occurs, the lethality of the barrage is higher than the previous shotgunning
method. The lethality of this walking artillery is calculated through a summation series in
the exponent [Parry95].

Game Programming Gems 4

5

T

Shooter

n Sequential
Corrected Rounds

a

σx

Spotter

Simulated Correction
Communication

Figure 5. Lethality of Walking Artillery with a Spotter

Equation

() ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−∗− ∑

−= =

n

i
x iia

k eP 2

22)1(2

1
σ

where,
n is the number of rounds fired in the barrage,
a is the lethal area of a single round against this target, and
σx is the standard deviation of the bullet dispersion in the x dimension.

Kills Come in Four Flavors

To paraphrase a famous pig, “all kills are equal, but some are more equal than others.”
Military simulations usually model four different types of kills that are most often found
in real-world combat. The first flavor is a mobility kill in which the target is no longer
able to move, but remains alive enough to fire its weapon or communicate with other
vehicles. The second is a firepower kill in which the weapon is damaged, but the vehicle
or person is still able to move. The third is a mobility and firepower kill in which the
vehicle or person is still alive, but cannot move or use its weapon. This target may still be
able to observe enemy operations, communicate, consume supplies and, in some
simulations, trigger a rescue operation. The final kill type is the catastrophic kill or K-
kill, often pictured as an aircraft exploding into a million pieces, a flaming tank turret
spinning through the air, or a person being turned into fresh chunks of meat.

These four kill types can be pictured as a Venn diagram (Figure 6). Though this form
clearly communicates the relationships between the kill types, in order to be applied, it
has to be separated so that a specific kill type can be determined quickly for each
engagement. This separated data is usually represented as a kill thermometer (Figure 7).
Normalizing the kill types in a single space as represented in the thermometer allows a

Game Programming Gems 4

6

program to determine the kill type of an engagement by drawing a single random
number.

Firepower
Kill

Mobility
Kill M&F

Kill

K
Kill

No Kill

Figure 6. Standard Kill Types

No Kill

Catastrophic
Kill

Mobility and
Firepower Kill

Firepower Kill

Mobility Kill

0.0

1.0

Pn

Pn+Pm

Pn+Pm +Pf

Pn+Pm +Pf +Pmf

Figure 7. Kill Thermometer

There are live-fire projects that determine the probability of each kill type under different
conditions by firing real weapons at real targets and measuring the result. Most
simulations and games do not have access to such a rich source of information.
Therefore, we have to identify common trends in experimental data and create equations
that mimic those while remaining flexible enough to be applied to new weapon/target
pairs. One simulation project noticed a distinct relationship between the mobility,
firepower, and catastrophic kill data they had received from live-fire experiments. This
relationship allowed them to create simple equations that use the root of a single
“probability of mobility or firepower kill” (PMoF is the union of all of the shaded areas
above) to calculate all of the other probabilities. The trend they noticed was that a
mobility kill occurred 90% of the time that damage was done (PM = 0.9* PMoF); a
firepower kill occurred 90% of the time (PF = 0.9* PMoF); and a catastrophic kill occurred
50% of the time that damage was done (PK = 0.5* PMoF).

Game Programming Gems 4

7

However, this information cannot be applied directly to the kill thermometer in Figure 7.
PM does not say that 90% of all engagements result in a mobility kill. It says that 90% of
mobility-or-firepower kills include a mobility kill. Therefore, it has to be separated to
make it possible to draw a single random number and determine which kill to apply to the
target. These independent kill probabilities can be extracted as shown below.

Equation

MoFkfmMoFmf

MoFk

MoFMMoFf

MoFFMoFm

MoFn

PPPPPP
PP

PPPP
PPPP

PP

∗=−−−=
∗=

∗=−=
∗=−=

−=

3.0
5.0

1.0
1.0

0.1

where, the small subscript indicates the probability that only one type of kill occurs. For
example, Pm is the probability of only getting a mobility kill, but not getting any other
form of kill. Pn is the probability of no kill occurring.

These independent kill probabilities determine where the breakpoints fall in a kill
thermometer and can be easily programmed as shown in the code on the CD-ROM.

Chemicals, Fireballs, and Area Magic

There have been many models of the dispersion of chemicals and other agents. The
following simple algorithm calculates the probability of a kill based on the volume of
chemical released and the distance that the release occurs from the target. For games, this
algorithm could be used for expanding fireballs, area magic, or any other exotic and evil
weapon.

Equation

() ()25.03
2

2 rnwdk
rk enwP ∗∗−∗= π

where,
n is the number of rounds impacting at a specific point,
wr is the weight of the chemical inside of each round (in kilograms),
d is the distance that the rounds fall from the target location (in meters), and
k is a constant representing the dispersion characteristic of the chemical. For these
experiments we recommend beginning with a value of 0.00135.

This equation allows you to deal with each round individually or to aggregate multiple
rounds into a single attack centered at the same impact point. The equation also

Game Programming Gems 4

8

incorporates the constant k that represents the density and viscosity of a chemical
compound. You can adjust this value to create the effect desired.

The Shrapnel Wedge

When an aircraft is shot down with a missile it is seldom accomplished by the missile
flying directly into the aircraft. More often, the missile reaches a “point of closest
approach” and explodes near the aircraft. The shrapnel from the missile then spreads out
in a donut or spherical pattern from the point of explosion and hopefully, the aircraft is
caught in that shrapnel pattern and destroyed [Ball85]. This algorithm can be used with
exploding projectiles, fireballs, and magic targeted at aircraft, dragons, and spacebugs.

φ1

φ2

r

Figure 8. Probability of Killing a Target in a Shrapnel Wedge

Equation

()()
x

k

v

eP

rnAx
−−=

−=

1

coscos2 21
2 φφπ

where,
n is the number of fragments or projectiles in the missile warhead,
Av is the vulnerable area of the target presented to the missile (in sq meters),
r is the range from the detonation point to the target (in meters),
φ1 is the angle from the trajectory of the missile to the near edge of the
vulnerability area of the target, and
φ2 is the angle from the trajectory of the missile to the far edge of the vulnerability
area of the target.

Beating the Bushes

Some engagements involve teams of hunters searching the terrain or bushes for hidden
prey [Shubik83]. When a large group of hunters is looking for a large group of prey, it is
possible to model the capture or kill of the prey in an aggregate form, rather than
representing the individual movement and line-of-sight of every hunter and every prey.

Game Programming Gems 4

9

As before, this approach is very valuable when the hunting and killing is being conducted
by AI controlled hunters and especially when it is happening off the player’s screen.

The algorithm is structured to calculate the change in the population of the prey based on
the number and efficiency of the hunters. It also accounts for different types of prey and
hunter animals, e.g. small rodents, medium-sized wolves, and large elephants.

To use the algorithm, we must define a probability of detection for each type of hunter
against each type of prey under the given conditions (open terrain, forest, city, etc.). We
must also select a “hardness” factor that differentiates the ability of the prey to elude,
escape, or survive the actions of the hunter. These numbers are usually determined
heuristically through experimentation and observation.

Prey are Light Hunters are Dark

h

h

h

h

h

h h

h

p p

p

p

p

p

p

p

p

Figure 9. Multiple Types of Hunters Searching for Multiple Types of Prey

Equation

()
)1(*

*
1

,

x
jj

n

i
ijij

epA

hDpkx

−

=

−=

⎟
⎠
⎞⎜

⎝
⎛ ∑∗=

where,
Aj is the number of kills of animal type j,
pj is the number of prey of type j,
kj is a hardness measure of the prey in the range [0,1],
p is the total number of prey of all types,
n is the number of prey types
Di,j is the probability that a hunter of type i can detect a prey of type j, and
hi is the number of hunters of type i.

Beating the Bushes with Prey Spacing

The final finger of death is a modification of the previous one. Mathematicians and
analysts noticed that the previous algorithm did not account for differences in the density
of prey hiding in the bushes. It is clearly much easier to find and kill prey when there are

Game Programming Gems 4

10

a hundred of them in the search area than if there are just two or three. Therefore, they
created a variation known as the Lulejian model [Shubik83] in which the spacing
between the prey is an important factor. The visual picture for this algorithm is the same
as that above, but the mathematics differ to account for the spacing of prey. The
definition of kj also varies slightly in that Lilejian defines kj as the average destruction of
the hunters on prey type j.

Equation

()

)1(*

**
1

x
jj

n

i
ij

epA

pshkx

−

=

−=

⎟
⎠
⎞⎜

⎝
⎛ ∑=

where,
Aj is the number of kills of prey type j,
pj is the number of prey of type j,
s is the average spacing between the prey in the search area (in meters),
p is the total number of prey of all types,
n is the number of prey types
kj is the average destruction of the hunters on prey type j, in the range [0,1],
hi is the number of hunters of type i.

Conclusion

The ten fingers of death described in this chapter are just a few of the combat killing
algorithms that can be applied to computer games. The concepts of geometry, probability,
statistics, and physics used in the ten fingers of death are good examples of approaches to
many problems. Game developers should do what military modelers do to improve these
– apply experience, mathematics, creativity, and other sciences to find equations that
work well for your game. Don’t be afraid to experiment!

References

[Ball85] Ball, Robert E. The Fundamentals of Aircraft Combat Survivability Analysis and

Design. AIAA Press, 1985.
[Epstein85] Epstein, Joshua M. The Calculus of Conventional War: Dynamic Analysis

without Lanchester Theory. Brookings Institution, 1985.
[Parry95] Parry, Samuel, Editor. Military OR Analyst’s Handbook: Conventional

Weapons Effects. Military Operations Research Society, 1995.
[May02] May, Janet O. “OneSAF Killer/Victim Scoreboard Capability for C2

Experimentation”, Proceedings of the 2002 Conference on Behavioral
Representation in Modeling and Simulation, 2002.

[Shubik83] Shubik, Martin, Editor. Mathematics of Conflict. Elsevier Science Publishers,
1983.
[Army90] U.S. Army. Field Artillery Handbook. U.S. Army, 1990.

